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Abstract— The ability to accurately detect onset of dementia
is important in the treatment of the disease. Clinically, the di-
agnosis of Alzheimer Disease (AD) and Mild Cognitive Impair-
ment (MCI) patients are based on an integrated assessment of
psychological tests and brain imaging such as positron emission
tomography (PET) and anatomical magnetic resonance imaging
(MRI). In this work using two different datasets, we propose
a behavior score-embedded encoder network (BSEN ) that in-
tegrates regularly adminstrated psychological tests information
into the encoding procedure of representing subject’s resting-
state fMRI data for automatic classification tasks. BSEN is
based on a 3D convolutional autoencoder structure with con-
trastive loss jointly optimized using behavior scores from Mini-
Mental State Examination (MMSE) and Clinical Dementia
Rating (CDR). Our proposed classification framework of using
BSEN achieved an overall recognition accuracy of 59.44%
(3-class classification: AD, MCI and Healthy Control), and
we further extracted the most discriminative regions between
healthy control (HC) and AD patients.

I. INTRODUCTION
Dementia is a multifaceted mental disorder characterized

by behavioral changes, cognitive deficits, and functional
deteriorations. While Alzheimer Disease (AD) is the most
common form of dementia occurred in elderly people, re-
search into understanding Mild Cognitive Impairment (MCI)
has gained interest since it is considered as an intermediate
stage between normal aging and AD [1]. Due to the irre-
versible nature of dementia, early detection of AD at its pre-
clinical stage is important for intervention. Numerous distinct
psychological tests, such as Mini-Mental State Examination
(MMSE) and Clinical Dementia Rating (CDR), have shown
to be efficient to pre-screen subjects with major cognitive and
memory impairment [2]. The numerical scores obtained from
the subject’s self-report answers to these testings are consid-
ered as behavior indicators reflecting neuro-psychological
markers of potential impairment. These results are thus
regularly adminstrated to assist in the decision of proceeding
with the actual invasive clinical diagnosis [3].
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In the last decade, functional Magnetic Resonance Imag-
ing (fMRI) has become a prevalent non-invasive method in
the study of brain’s functional activity. Resting-state func-
tional activity is of particular interest since researchers have
found that low-frequency blood oxygenation level dependent
(BOLD) signal fluctuation during subject’s resting condition
shows a high synchronization pattern within motor cortices,
visual cortices, language area and default mode network
(DMN) [4]. Furthermore, resting-state fMRI (rs-fMRI) has
been extensively employed in studies of brain’s functional
connectivity in AD and MCI subjects. For example, Wang
et al. reported that the functional connectivity between right
hippocampus and regions in DMN was disrupted in AD
[5], and they further discovered a reduced integrity in the
thalamus-related cortical networks for MCI subjects [6].

Aside from these studies, researcher have further shown
that by using machine learning (ML) techniques, subjects of
AD, MCI and HC (healthy control) can be automatically
differentiated using their rs-fMRI data respectively. This
provides a viable mean in dementia classification using non-
invasive bio-imaging technique. For example, Khazaee et al.
utilized the Granger causality measures with naïve Bayes
classifier to identify AD, MCI and HC [7]; Luo et al. applied
a 3D convolutional neural network (CNN) to extract the
representation of brain to differentiate AD patients from
HC [8]. Clinically, the final diagnosis of dementia relies on
comprehensive assessment including both psychological tests
and brain imaging (MRI and computerized tomography),
however, most of these previous automatic classification
works using rs-fMRI do not integrate these behavior scores
in their framework. In this work, our goal is to embed
this important auxiliary information directly into a brain
encoder network to generate rs-fMRI representation that
would improve dementia classification from brain imaging.

Specifically, we propose a behavior score-embedded brain
encoder network (BSEN ) that can be used to encode rs-
fMRI as embedding for dementia discriminative task. The
BSEN is based on a 3D CNN autoencoder (AE) architec-
ture that is jointly optimized with contrastive loss [9] guided
by the psychological testing scores. The encoder portion of
the BSEN , once learned, can then be used to generate
representation on patient’s rs-fMRI data without asking the
subject to work through these psychological testings. Our
method achieved an improvement of almost 10% over vanilla
3D-CNN AE in the diagnosis prediction. Our study was
further replicated using another dataset and the obtained
results that were virtually identical. Finally, in a follow-up
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TABLE I
Demographic and clinical information

Analysis set HC(26) MCI(23) AD(21)
Female / Male 21 / 5 17 / 6 17 / 4
Age (mean±std) [min-max] 63.04±5.60 [55-72] 70.78±8.34 [58-86] 76.36±7.67 [68-88]
Education (mean±std) [min-max] 10.54±4.42 [3-16] 6.83±4.30 [0-16] 4.45±4.72 [0-18]
CDR (mean±std) [min-max] 0.03±0.14 [0-0.5] 0.24±0.33 [0-2] 0.89±0.45 [0.5-2]
MMSE (mean±std) [min-max] 27.58±2.21 [23-30] 24.70±3.83 [5-29] 14.48±6.46 [6-27]
Replication set HC(29) MCI(4) AD(21)
Female / Male 11 / 18 1 / 3 12 / 9
Age (mean±std) [min-max] 76.02±7.54 [65-94] 71.87±9.77 [63-88] 74.0±7.41 [56-86]
Education no available information
CDR (mean±std) [min-max] 0.12±0.25 [0-1] 0.5±0 [0.5-0.5] 1.02±0.44 [0.5-2]
MMSE (mean±std) [min-max] 29.17±1.41 [24-30] 28.25±1.48 [26-30] 21.09±3.24 [15-27]

analysis, we demonstrated that there exist distinctive ROIs
being included in embedding between subjects of HC and
patients using our BSEN extractor.

II. RESEARCH METHODOLOGY

A. fMRI Data Collection and Preprocessing

In the first set (analysis set), raw rs-fMRI data consisting
of 26 HC subjects, 23 MCI subjects and 21 AD subjects were
collected. fMRI scanning was performed on 1.5 T scanner. A
high-resolution T1-weighted 3D-SPGR anatomical scan was
acquired for co-registration between structural and functional
images (TR/TE = 3000/35 ms, voxel size = 3×3×3 mm3,
43 slices, 120 repetitions, and flip angle = 90◦). Data used
for replication of this study (replication set) were obtained
from the ADNI database (www.loni.ucla.edu/ADNI) includ-
ing 29 HC subjects, 4 MCI subjects and 21 AD subjects
(see Table 1 for demographics information of the 2 datasets).
Note that the ADNI dataset has most often been used for
its structural data, here, the resting-state fMRI scans were
used. All image acquisitions have been carefully quality-
controlled by experienced neuroimaging investigators and
some of the subjects in the ADNI dataset were removed
because of the low quality of images. fMRI scanning was
performed on 3.0 T scanner (TR/TE = 3000/35 ms, voxel
size: 3.3125×3.3125×3.3125 mm3, 48 slices, 140 repeti-
tions, and flip angle = 80◦). In both sets, The data were
subjected to a standard resting-state preprocessing pipeline
using SPM12 [10] and DPARSF [11] including slicing timing
and realignment. We used the images from 20th time point to
90th to prevent potential noisy data. The Institutional Review
Board of National Health Research Institute Taiwan approved
the study.
B. Psychological Tests

In this work, we use behavior scores generated from the
two psychological testings, Clinical Dementia Rating (CDR)
and Mini-Mental State Examination (MMSE), to guide the
learning of our encoder network for rs-fMRI data.
• CDR: It rates the cognitive performance in six domains:

memory, orientation, judgment and problem solving,
community affairs, home and hobbies, and personal
care. Each domain is rated independently from one
to five indicating levels of impairment. In this work,
we binarize the CDR into healthy cluster and probable
dementia using CDR = 0.5 as cut-off.

• MMSE: It estimates the severity of cognitive impair-
ment in seven categories: orientation to time, orientation

Fig. 1. A schematic of the BSEN architecture in classifying HC, MCI and
AD. The input of the network is BOLD signal of subjects per time.

to place, registration of three words, attention and
calculation, recall of three words, language, and visual
construction. The total score is 30 points. We binarize
the MMSE into healthy and impaired group with the
cut-off score of MMSE = 27.

C. Behavior Score-Embedded Encoder Network (BSEN )

Figure 1 depicts schematic of our proposed behavior score-
embedded encoder network (BSEN ). The BSEN is a rep-
resentation (feature) extractor with two stage optimization:
first is an autoencoder (modelAE), and second is contrastive
loss model (modelC). The details of each network learning
are described below:
• The convolutional autoencoder (modelAE): We employ

an 3D-CNN autoencoder architecture to learn the en-
coder and decoder network. Given a collection of N
training sample pairs {Xi, Yi}, where Xi is a recon-
structed brain image and Yi is the original brain image.
We minimize the following Mean Squared Error (MSE):

LRec =
1

N

N∑
i=1

‖Xi − Yi‖22 (1)

• The contrastive loss model (modelC): We embed the
information of psychological tests as an additional loss
term, LC , to modify the originally learned CNN AE
to achieve a more discriminative hidden representation.
The objective of the contrastive loss aims at enhancing
intra-class compactness and inter-class dispersion. In
this case, this loss acts as a regularizer forcing rs-fMRI
representation with similar behavior scores (the two
different group specified according to the cutoff score
in section B) would be encoded as having more similar
latent vectors than otherwise. This loss is embedded to
the bottleneck layer of the CNN AE by explicitly cen-
tering the representation with respect to each behavior
score center in the following form:

LC =
1

2

m∑
i=1

‖xi − cei‖
2
2

(
∑m

j=1,j 6=ei
‖xi − cj‖

2

2
) + δ

(2)

where m is the number of clusters (i.e., 2 for each
psychological tests), xi is the data under condition i
and cj is the center of j cluster (cei denotes to the



similar meaning of cluster ei ). δ is set as 1 preventing
the denominator equals to 0.

Finally, the complete BSEN is optimized using a total
loss, LTotal, with weighted hyperparameter α set as 0.5 in
the following form:

Ltotal = LRec + αLC (3)
D. Dementia Classification and Fusion Technique

We derived the rs-fMRI feature by extracting BSEN
output from the bottleneck layer for each subject as input
to the multi-class linear-kernel support vector machine for
HC, MCI and AD classification. In addition, we conducted
decision score late fusion to perform ensemble on two
BSENs each learned from a different psychological tests.

III. EXPERIMENTAL SETUP AND RESULTS

We carried out three-class classification (HC, MCI and
AD) task. The evaluation scheme was via 5-fold cross-
validation. The accuracy was measured in unweighted aver-
age recall (UAR). All of the network learning and additional
feature selection were carried out only in the training set.
A. Experimental Setup

The BSEN architecture is composed of three 3D convo-
lutional layers with numbers of channels 32-16-8 for encoder
and symmetrically for decoder. The kernel size of layers
was set as 3 × 3 × 3, while stride was set at 1×1×1
and zero padding were 1×1×1 to ensure the consistent
dimensions. Each convolutional layer was followed with
batch normalization and maxpooling with size 2×2×2. At
the last layer of decoder, the activation function ReLU was
used. The total loss function is composed of contrastive loss
on 5120-dimensional latent bottleneck representation and
mean squared error for reconstruction task. The batch size
and epoch were set to 32 and 30 respectively. BSEN is op-
timized using Adam with learning rate = 0.0005 (contrastive
learning) and 0.0001 (autoencoder learning). We paded the
raw data, 61×73×61 for the analysis set, and 60×72×60
for the replication set, to respectively 64 × 80 × 64 and
64×72×64 with zeros in order to better perform maxpooling
and upsampling. Once the BSEN was trained, the subject’s
averaged brain image was fed into the BSEN encoder, and
the bottleneck layer was extracted (8 channels). The feature
representation of subjects was obtained by mean pooling the
bottleneck layer across channels.

We compared our framework with the following methods
to derive rs-fMRI feature representation:
• ICA: Perform independent component analysis on

BOLD signal.
• PCA: Perform principal component analysis on BOLD

signal.
• CAE: Perform 3D convolutional autoencoder without

contrastive loss embedding.
Our proposed BSEN was learned with two different psy-
chological tests, BCDRSEN , BMMSESEN . These fea-
tures extracted from the above-mentioned models were then
fed into the HC, MCI and AD classification procedures.
BSENFusion indicates the final late fusion from the two

TABLE II
3-class classification results of our proposed BSEN model and other

representation techniques. The accuracy is measured in UAR (%).

ICA PCA CAE BCDRSEN BMMSESEN BSENFusion

HC 46.15 42.31 61.54 57.69 57.69 61.54
MCI 39.13 65.22 56.52 56.52 69.57 73.91
AD 42.85 38.09 33.33 52.38 38.09 42.86
UAR 42.71 48.54 50.46 55.53 55.11 59.44
Replication 38.62 44.44 48.23 52.52 52.13 56.32

TABLE III
Significantly different ROIs discovered from two-sided Students t-tests

between HC and AD.

ROIs found in CAE and BSEN
ROIs T-value P-value
Anterior cingulate cortex (R/L) 2.183/2.25 0.034/0.029
Insula (L) 2.055 0.046
Middle frontal gyrus (L) 2.106 0.041
Inferior frontal gyrus, triangular (L) 2.447 0.018
Inferior frontal gyrus, orbital (L) 2.202 0.033
Rolandic operculum (L) 2.113 0.04
Superior frontal gyrus, medial (L) 2.216 0.032
Superior temporal gyrus, temporal pole (L) 2.239 0.03
ROIs found in BSEN only

Precentral gyrus (R/L) CDR: 2.806/2.341 0.007/0.024
MMSE: 2.956/2.761 0.005/0.008

Inferior frontal gyrus, opercular (R/L) CDR: 2.053/X 0.046/X
MMSE: 2.298/2.272 0.026/0.028

Supplementary motor area (R/L) CDR: 2.364/2.140 0.023/0.039
MMSE: 2.143/X 0.039/X

ROIs found in BCDRSEN only
Paracentral lobule (R) 2.134 0.039
Supramarginal gyrus (L) 2.116 0.04
Inferior parietal gyrus (L) 2.114 0.04
Angular gyrus (L) 2.109 0.041
ROIs found in BMMSESEN only
Superior temporal gyrus, temporal pole (R) 2.604 0.013
Middle temporal gyrus (L) 2.051 0.046

BSEN models. Please, note that all analysis scripts of the
present study are readily accessible to the reader online
(https://biicgitlab.ee.nthu.edu.tw/JeremyLB/bsen).

B. Experimental Results and Discussion

Table 2 summarizes our complete experimental results.
The proposed BSEN obtained the best accuracy compared
to all other baseline systems. Especially, when using repre-
sentation learned with CDR score, which received 55.53 %
UAR (almost 20% above chance level). We further performed
late fusion by weighted summing of the predicted probabili-
ties from the two behavior score-embedded representations,
which improved UAR to 59.44%. When comparing with
all of the baseline systems, performances achieved using
our proposed BSEN were better than all other bench-
marks demonstrating that the behavior score embedding
via contrastive joint optimization can indeed help improve
discriminative power in dementia classification using rs-
fMRI. Finally, in a replication analysis, virtually identical
results were obtained.

In summary, using the convolutional autoencoder approach
(CAE), which can been seen as a non-linear version of PCA,
improved slightly the recognition results (by 1.92%). The
major boost in the accuracy comes from integrating psy-
chological testing information, which increased the overall
performance up to almost 10% when comparing with CAE.



IV. DISCRIMINATIVE REGIONS ANALYSIS

To further understand how neuropsychological tests were
involved during the embedding learning process, we recon-
structed the brain rs-fMRI representations of our cohort for
each group (AD, MCI, HC) using the decoder portion of
the BSEN . We assessed statistical significance based on
(family wise error, multiple-comparison corrected) p-values
on the reconstructed brain images to analyze whether the
active ROIs (defined by the automated anatomical labeling
(AAL)) would demonstrate significantly different activation
between HC and AD. Table 3 summarizes the significant
ROIs when comparing HC with AD.

Part of the salience network, critical for guidance of
thought and behaviors, was found to be aberrant in patients
with AD compared with HC and MCI patients as in a pre-
vious work [12]. Besides, rs-fMRI recording show abnormal
activation in several brain areas in AD, such as middle frontal
gyrus, inferior frontal gyrus (both triangular and orbital),
rolandic operculum, superior frontal gyrus (medial) and
superior temporal gyrus (temporal pole) [13]. In this work,
these ROIs were also identified to be the dominant ROIs in
the derived discriminative representation extracted from both
CAE and BSEN . In addition, bilateral precentral gyrus,
inferior frontal gyrus (opercular), and supplementary motor
area, that were additionally identified in the two behavior
score-embedded model (BCDRSEN , BMMSESEN ), are
likely to be the major contributing factor that BSEN would
outperform CAE.

It is worth noting that there was a difference between
the two psychological test-enhanced representations. For
example, representations of right paracentral lobe and left
angular gyrus demonstrated considerable differences between
HC and AD when embedded with CDR scores while the left
middle temporal and the right superior temporal gyras were
used as discriminant when embedded MMSE scores. Each
of these psychological tests, while mostly common, may still
be related to distinct functional activation in subject’s brain
during resting state; hence, fusing all of these representations
helped achieving the improvement in our results.

V. CONCLUSIONS

In this work, we introduced a novel feature embedding
framework of brain imaging for classifying HC, MCI and
AD. Specifically, we propose a BSEN to encode the sub-
ject’s rs-fMRI through jointly optimizing behavior scores
using contrastive loss embedding. We achieve a promising
59.44% accuracy in three-way classification. Our future work
is to investigate the differences observed when learning rs-
fMRI representations with the two psychological tests to fur-
ther tease apart the underlying neuro-cognitive mechanistic
differences between AD, MCI and HC.
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