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Background: Sexual orientation in humans represents a multilevel construct that is grounded in both neurobiological and environ-
mental factors. Objective: Here, we bring to bear a machine learning approach to predict sexual orientation from gray matter volumes
(GMVs) or resting-state functional connectivity (RSFC) in a cohort of 45 heterosexual and 41 homosexual participants. Methods: In
both brain assessments, we used penalized logistic regression models and nonparametric permutation. Results: We found an average
accuracy of 62% (±6.72) for predicting sexual orientation based on GMV and an average predictive accuracy of 92% (±9.89) using RSFC.
Regions in the precentral gyrus, precuneus and the prefrontal cortex were significantly informative for distinguishing heterosexual
from homosexual participants in both the GMV and RSFC settings. Conclusions: These results indicate that, aside from self-reports,
RSFC offers neurobiological information valuable for highly accurate prediction of sexual orientation. We demonstrate for the first
time that sexual orientation is reflected in specific patterns of RSFC, which enable personalized, brain-based predictions of this highly
complex human trait. While these results are preliminary, our neurobiologically based prediction framework illustrates the great value
and potential of RSFC for revealing biologically meaningful and generalizable predictive patterns in the human brain.
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Introduction
In the quest for the origins of sexual orientation, sci-
entists have long grappled with the question about the
degree to which sexual orientation is biologically deter-
mined or socially constructed, i.e. shaped by cultural
expectations and personal experiences. While there are
arguments and vocal proponents for both (i) biological
(Swaab 2007, 2008; Savic et al. 2010; Roselli 2018) and
(ii) social or environmental (Butler 1990; Knauer 2000;
Eskridge Jr. 2005, 2008) influences that shape sexual
orientation, a combined influence of both factors may
provide a more realistic answer. However, there is not
a single specific theory of sexual orientation that has
received overwhelming agreement among scientists.

Today, most experts are sympathetic to the view
that the development of sexual orientation seems to
result from complex interaction effects between genes,
hormones, peers, and social norms, thus perhaps a prime

example of the interplay between nature and nurture
(Hines et al. 2004; Jorge 2010; Bailey et al. 2016; Balthazart
2016). For clarity and in accordance with previous
research (Clemens et al. 2020, 2021; Shah et al. 2012),
we will refer to “biological sex” as the sex assigned to
an individual at birth and to “sexual orientation” as
the sexual attraction or sexual preference. The term
heterosexual refers to men or women who are sexually
or emotionally attracted to individuals of the other
biological sex. Instead, the term homosexual refers to
individuals who are sexually or emotionally attracted
to individuals of the same biological sex (American
Psychological Association 2008).

With respect to putative biological influences, sex-
ual orientation has been linked to neuroendocrine
expression levels (Gladue et al. 1984), neurotransmitter
systems (Liu et al. 2011), and genetic liability (Hamer
et al. 1993). These factors contribute to the shaping
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of brain structure and function, especially during
early development. As a motivation for the present
investigation, it is therefore possible and plausible
that brain measurements of hetero- and homosexual
individuals also feature discernible anatomical and
functional characteristics. Indeed, neuroimaging studies
investigating brain morphology and intrinsic functional
coupling repeatedly reported differences between het-
erosexual and homosexual individuals (Frigerio et al.
2021). Earlier brain-imaging research has documented
group differences based on both structural (Ponseti et al.
2007; Savic and Lindström, 2008; Witelson et al. 2008; Abé
et al. 2014; Votinov et al. 2021; Manzouri and Savic 2018)
and functional (Hu et al. 2008; Paul et al. 2008; Ponseti
et al. 2009; Zeki et al. 2010; Kagerer et al. 2011; Perry et al.
2013; Sylva et al. 2013; Safron et al. 2017, 2018; Manzouri
and Savic 2018; Folkierska-Żukowska et al. 2020) brain
measurements. All aforementioned functional neu-
roimaging studies were task-based functional magnetic
resonance imaging (fMRI) studies, i.e. presenting visual
or auditory stimuli to evoke sex-specific responses and
to analyze differences in brain activity.

Overall, these neuroimaging results paint a colorful
picture of research on sexual orientation. Drawing gen-
eralizable and robust conclusions from these previous
studies has previously been hampered by small sample
sizes and the heterogeneity of experimental task designs.
For instance, Folkierska-Zukowska et al. (2020) used a
mental rotation task in groups of 23 participants. These
authors found significant differences in a subset of
brain regions, including the right superior frontal gyrus,
right angular gyrus, right amygdala/parahippocampal
gyrus, and bilaterally in the middle temporal gyrus and
precuneus. Safron et al. (2017) examined the activation
patterns in response to both erotic pictures and videos in
groups of 11 participants. The study did not find distinct
brain activity patterns between hetero- and homosexual
individuals. Kagerer et al. (2011) focused on the group
differences involved in the processing of sexual stimuli in
groups of 11 participants. They did not find any group dif-
ferences either. Hu et al. (2008) as well as Paul et al. (2008)
used real-time visual stimulation using groups of 10 par-
ticipants. The first research team found differences in the
left angular gyrus, left caudate nucleus, right pallidum,
bilateral lingual gyrus, right hippocampus, and right
parahippocampal gyrus. The second research team, how-
ever, found similar patterns of activation in both groups.
More importantly, most of these task-based fMRI studies
did perform a whole-brain GLM. Only a few picked
regions of interest (ROIs) based on previous research find-
ings to perform their analysis. This heterogeneity among
task-design and analytical choices renders comparison
among findings difficult. As a consequence, the possibil-
ity of examining sexual orientation in a task-free context,
charting resting-state functional connectivity (RSFC), has
started to raise attention, thus opening a new window of
opportunity to revisit the brain correlates of sexual ori-
entation. As compared to task-based fMRI investigations,

RSFC fMRI studies are advantageous for several reasons:
They are more easy and cheaper to conduct; they provide
much better signal to noise ration; and they allow for a
substantially larger suitable population of participants,
as no complex set of instructions is required.

In our particular approach, we confronted the question
of whether sexual orientation can be reliably predicted
from structural and functional brain measurements. If
clearly distinguishable brain phenotypes for heterosex-
ual and homosexual individuals are detectable, it should
be practically feasible for predictive pattern classifica-
tion to tell apart an individuals’ sexual orientation based
solely on a brain scanning session. The present machine
learning study put this possibility to a direct test in a
rarely available sample of heterosexual and homosex-
ual men and women. In contrast to previous efforts
on this topic, our goal is not to design experimental
stimuli to induce specific neural responses, localize the
associated changes in brain function, and merely com-
pare these changes between homo- and heterosexual
groups. Instead, our present investigation provides the
first spatially unbiased, whole-brain machine learning
approach of male and female homo- and heterosexual
participants.

Materials and methods
Participants
The magnetic resonance imaging (MRI) data that
presented the basis for the present investigation were
recorded as part of a larger research project designed
to elucidate the neurobiological substrates of gender
identity and sexual orientation. Within this project,
several fMRI tasks and resting-state fMRI were acquired,
which have been described elsewhere (Junger et al. 2013;
Clemens et al. 2017, 2020; Smith et al. 2018). For the
resting-state condition, participants were asked to relax
in the scanner, keep their eyes open, and avoid falling
asleep, which we confirmed in postscan interviews. In
total, 86 participants took part in the present study:
45 heterosexual participants (HE) and 41 homosexual
participants (HO). Basic demographic information on the
sample can be found in Table 1. Biological sex was evenly
distributed in both homo- and heterosexual participants:
22 heterosexual men, 23 heterosexual women, 22
homosexual men, and 19 homosexual women. All
participants were recruited via public announcement
in Aachen (Germany) and the surrounding area. Sexual
orientation was systematically assessed by a single
self-report question (“Do you identify as primarily
hetero- or homosexual?”). To rule out the possibility
of including individuals with bisexual orientation, only
participants who unambiguously indicated either homo-
or heterosexual orientation in the screening were eligible
for our study. This was verified first by the answer
given to the aforementioned screening question (Do you
identify as primarily hetero- or homosexual?). Second,
the interviewer double-checked the correctness of the
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Table 1. Demographic information in the participant sample.

Heterosexual (HE) Homosexual (HO) P-value

Participants (men/women) 45 (22/23) 41 (22/19) —
Age (SD) 32 (10) 28 (6) <0.05
Years of education (SD) 15 (3) 16 (2) >0.05

The table lists demographic information about our participants, divided by groups. For age and education, we present means, with standard deviations (SDs)
in brackets. Both age and years of education were compared to check for significant group differences using standard t-tests, with significant differences only
present for age. As part of the confound-removal procedure, variance that could be explained by the factors “age,” “biological sex,” and “years of education”
was regressed out from both the MRI and the fMRI signals.

Fig. 1. Analysis workflow for prediction from brain morphology. A) Using the Schaefer Yeo reference atlas (Schaefer et al. 2018), quantitative measures
of gray-matter volume differences were extracted within the 100 ROIs of the atlas in the 86 participants. B) Linear predictive models were implemented
using 5-fold crossvalidation to predict sexual orientation from the GMVs. The crossvalidation procedure was repeated 100 times to ensure stability. The
final coefficients and accuracies were then averaged. C) Statistical significance for weights in the final model was assessed and results were overlaid
onto the MNI-152 brain for visualization.

answer by verbally asking participants whether they are
sure and unambiguous of their indicated response.

The German version of the Structured Clinical Inter-
view of the fourth edition of the Diagnostic and Statis-
tical Manual of Mental Disorders (Wittchen et al. 1997)
was applied by a board-certified psychologist to ensure
exclusion of participants with any mental health diag-
noses. Further exclusion criteria were the presence of
neurological disorders, other medical conditions affect-
ing the brain metabolism, and first-degree relatives with
a history of mental health diagnosis. The local Ethics
Committee of the Medical Faculty of RWTH Aachen Uni-
versity approved the study (EK 088/09). Participants were
financially compensated and each participant gave writ-
ten informed consent for participation.

Brain imaging data acquisition
Using a 3 Tesla Siemens Trio Scanner (Siemens Medical
Systems, Erlangen, Germany) at the Department of Psy-
chiatry, Psychotherapy and Psychosomatics of the RWTH
Aachen University Hospital, the following sequences cov-
ering the entire brain were obtained for each participant:
(i) 4-min T1-weighted magnetization prepared rapid gra-
dient echo 3D measurement (time repetition [TR] = 1,900;
time echo [TE] = 2.52; TI = 900; α = 9◦; FoV=250 mm2;
voxel size: 1 × 1 × 1 mm; slices = 176) and (ii) a 6.2-min
T2∗-weighted echo-planar imaging resting-state condi-
tion (TR = 3,000; TE = 35, α=84◦; FoV = 192 mm; voxel
size: 3 × 3 × 3 mm; 44 slices; gap 15%; 64 × 64 matrix;
repetitions = 124).

Image processing
T1 anatomical images were cropped with FMRIB’s
Software Library’s (FSL’s) “robustfov” tool to remove neck
and lower head, reoriented to match the orientation

of the MNI152 standard template with the “fslreori-
ent2std” tool, and nonbrain tissue was removed using
Brain Extraction Tool (BET; Smith 2002). Using FMRI
Expert Analysis Tool Version 6.00, part of FSL, all
preprocessing steps for the fMRI data were carried
out using a standard pipeline, which is comparable to
previous studies (Satterthwaite et al. 2013; Clemens et al.
2017). This pipeline included spatial and temporal data
normalization and special consideration of in-scanner
head motion. We discarded the first 3 images of each
functional series to avoid T1 saturation effects; the
remaining 121 volumes were submitted to downstream
analyses. We applied the following signal process-
ing steps: motion correction using Motion Correction
FMRIB’s linear image registration tool (Jenkinson et al.
2002), nonbrain removal using BET (Smith 20202), spatial
smoothing using a Gaussian kernel of full-width at half-
maximum of 6 mm, grand-mean intensity normalization
of the entire 4D dataset by a single multiplicative factor,
and high-pass temporal filtering (Gaussian-weighted
least-squares straight line fitting, with sigma = 180 s).
Low-pass filtering was explicitly kept to a minimum to
preserve high-frequency content and to keep the largest
frequency range possible. Registration to high-resolution
structural and/or standard space images was carried
out using FLIRT (FMRIB’s linear image registration tool;
Jenkinson and Smith, 2001).

Registration from subject to standard space was then
refined using FMRIB’s nonlinear image registration tool.
Additional preprocessing steps included masking of
nonbrain voxels, voxel-wise demeaning of the data, and
normalization of data to Montreal Neurological Institute
(MNI) space. To further reduce spurious correlations
associated with head motion in the 86 participants,
variation that could be explained by head motion was
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removed from each voxel’s time series at the single-
subject level. Adhering to previously published studies
(Chai et al. 2012; Satterthwaite et al. 2013; Kernbach
et al. 2018), we helped remove nuisance-related variation
in the brain signals based on 24 regressors of no
interest: (i) 6 motion parameters derived from the image
realignment, (ii) their 6 first derivatives, and (iii) their
respective 12 squared terms. This regression approach
has been shown to increase the specificity and sensitivity
of functional connectivity analyses and to detect valid
signal correlation at rest (Satterwaite et al. 2013).

Signal extraction for feature space construction
For extracting relevant signals from a functional or struc-
tural brain scan, 100 ROIs from the Schaefer Yeo refer-
ence atlas (Schaefer et al. 2018) served as the topographic
atlas definition. These anatomical regions were used to
extract average MRI signals from the voxels belonging
to a given ROI. Note that for the sake of reproducibil-
ity and comparability, we extracted MRI signals in the
structural and functional settings from the same ref-
erence atlas (i.e. the Schaefer Yeo atlas). This atlas is
readily available online for replication and reuse. In RSFC,
each ROI was represented by the average blood oxygen
level–dependent (BOLD) signal (121 time-series) across
all voxels of that ROI. In structural brain data, each
ROI was represented by the average gray matter volume
(GMV) across all voxels belonging to a particular ROI.
In sum, the resulting feature spaces for further analysis
were composed of as many brain features as ROIs in the
Schaefer atlas (100 ROIs in total) for the participants.
All ROI-wise functional or structural time series were
transformed into z-scores by mean centering and unit-
variance scaling. As part of the confound-removal proce-
dure, variance that could be explained by the factors age,
biological sex, years of education, and handedness was
regressed out from the corresponding brain features at
the subject-by-subject level.

Machine learning prediction of sexual
orientation from structural brain measures
We analyzed the relative importance of the GMV signal
per ROI for predicting sexual orientation using a L2-
penalized sigmoid-loss linear predictive model. The
L2 shrinkage regularization (default hyperparameter
lambda = 1.0) was used to reduce the risk of overfitting,
which can render the models’ prediction of future obser-
vation unreliable (Okser et al. 2014). The L2-penalized
logistic regression model estimated the separating
hyperplane (i.e. a linear function) in input space that
best allowed distinguishing between homosexual and
heterosexual participants. The outcome to be predicted
was defined by being homosexual (encoded as 0) or being
heterosexual (encoded as 1). The model parameters were
then fit to optimally predict sexual orientation based on
all the ROI GMV using 5-fold crossvalidation. That is,
the participants were divided into 5 balanced data splits
(fold), each preserving the percentage of participants

of both classes (homosexual and heterosexual). In
each crossvalidation fold, the predictive model was
fitted on 80% of the participants (the training set) and
was assessed on the left-out 20% (the test set) of the
participants (Hastie et al. 2001). To ensure the stability
of the model coefficients, this 5-fold crossvalidation
was repeated 100 times (model fitting and testing).
The obtained percentages of correctly classified test
participants and coefficients were then averaged and
these are described in our Results section. A visualization
of all analysis steps for brain strcutural data can be found
in Fig. 1.

Machine learning prediction of sexual
orientation from functional brain measures
As in the GMV setting, a L2-penalized sigmoid-loss linear
predictive model (lambda = 1.0) was used to assess the
importance of all the ROI RSFC patterns for predicting
sexual orientation. Extending upon the GMV setting, this
algorithm was used as stacking classifier. Stacking is a
way to build an ensemble algorithm from multiple classi-
fications models. That is, multiple learners (L2-penalized
logistic regressions) were used to build an intermediate
prediction. A new instance of that algorithm (another
L2-penalized logistic regression) was estimated on the
same training participants using these intermediate pre-
dictions (probabilistic class assignments that are natu-
rally afforded by our pattern-learning model) to predict
the same target (sexual orientation). The final model
(composite model) is placed on the top of the outcome
predictions of the other lower-level models (base models).
Put more simply, stacking enables to learn how to best
combine the predictions from a collection of learning
algorithms. This analytical framework makes it possible
to obtain better predictive performance than could be
obtained from any of the constituent learning algorithms
alone (Wolpert, 1992; Breiman, 1996). In this way, we
capitalized on the stacking ensemble model to get the
most out of our available participant sample. The fol-
lowing steps were performed for the machine learning
prediction of sexual orientation from functional brain
measures:

Pearson correlation coefficients to estimate the functional
coupling strengths

For each participant, the 121 averaged BOLD signals
had been extracted in each of the 100 ROIs (see above).
A Pearson correlation matrix with all pairwise region-
region association strengths was computed for each
subject. A Pearson correlation is a measure of linear
correlation between the time series of 2 given ROIs
(Benesty et al. 2009). Here, we computed the Pearson
correlation between the time series (121 scans per
participant) of each ROI included in our analysis (100
ROIs). Therefore, we obtained a (symmetric) matrix of
size 100 ∗ 100 for each participant. We then extracted
every correlation of each ROI. That is, we extracted a total
of 99 correlation values per ROI for each participant. Note
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Fig. 2. Analysis workflow for prediction from intrinsic function coupling using stacking ensemble modeling. A) Using the Schaefer Yeo reference atlas
(Schaefer et al., 2018), the 121 brain scan time points of BOLD signals were extracted in each of the 100 ROIs for each of the 86 participants. B) The
Pearson correlation between the averaged bold signal values (121 scans) of each ROI (100 ROIs) were computed. Then, C) for each ROI and participant,
the 99 estimates of functional connectivity strength with the remaining ROIs were extracted. D) Separately for each ROI, the 99 correlation values per
subject were used to fit a L2-penalized pattern-learning algorithm on 80% of the data. The built logistic regression (i.e. the 100 base models) was then
used to predict sexual orientation (homosexual vs. heterosexual) in the left-out participants (20%). The obtained predictions of the base models were
combined for training a top-level stacking model (i.e. the composite model). E) statistical significance for weights in the final averaged model (across
the previous 5-fold crossvalidated composite models) was assessed and results were overlaid onto the MNI-152 brain for visualization.

that we did not extract 100 coupling estimates as we did
not use the correlation with the ROI itself, which would
always be equal to 1. The 99 ensuing connectivity values
per ROI per subject were then used as input in the base
models to classify sexual orientation, with 0 encoding
homosexual and 1 encoding heterosexual individuals
(see Fig. 2).

Base models for ROI-wise prediction of the target phenotype

Separately for each ROI, we used the 99 correlation values
per subject to fit an L2-penalized logistic regression algo-
rithm on 80% of the participants (the training sample)
in a 5-fold crossvalidation framework. Then, we used
the formed logistic regression model to predict sexual
orientation (homosexual vs. heterosexual) in the left-out
participants (the test sample). The evaluation of sexual
orientation status in new participants yielded practi-
cally relevant predictions because the algorithm did not
visit these participants during model building process
(Gabrieli et al. 2015; Bzdok et al. 2019). Thus, each base
model predicted the probability for a given participant to
be homo- or heterosexual from the functional brain data
correlation of one particular ROI. The independent (prob-
abilistic) sexual orientation status predictions of each
ROI correlation with the remaining ROIs served as input
for the integrated model (Karrer et al. 2019). In other
words, the probabilistic prediction outputs of the base
models were values ranging between 0 and 1, indicating a
probability of predicting a homosexual or a heterosexual
participant. The continuous prediction probabilities were
stored and served as intermediate input features for a
new model fit.

Stacking models for ensemble prediction of the target
phenotype

The previous specific predictions of the base models were
combined for training a more powerful predictive model
in an integrative modeling approach. The built ensemble
model considered the separate probabilities of all ROI
correlations with the remaining set of ROIs at the same
time for sexual orientation prediction. In other words,
the continuous prediction probabilities were used to fit a
L2-penalized logistic regression algorithm on 80% of the
participants (the same identical training sample as in the
previous step) again in a 5-fold crossvalidation fashion.
It is important to appreciate that the model estimations
of the base models as well as the composite model
were carried out on only 80% of the participants (the
training set). Each fold of the crossvalidation procedure
contained 20% of independent participants, the same
20% in the first and the second steps of the stacking anal-
ysis. This modeling strategy ensured that no information
leaked into the fitting process and guarded the analysis
workflow against circular analysis. Finally, we averaged
weights and accuracies across the 5 CV folds for the final
model fit. A visualization of all analysis steps for brain
functional data can be found in Fig. 2.

Testing for significance
A L2-penalized predictive model based on GMV and a
stacked L2-penalized logistic regression based on RSFC
were conducted separately. Statistical significance for
weights in each of the 2 final models was assessed based
on P values derived through a rigorous nonparamet-
ric permutation approach using the model weights as
the test statistic (Nichols and Holmes 2002; Efron 2012).
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Relying on minimal modeling assumptions, a valid null
distribution was derived for the achieved weights result-
ing from the logistic regression fit. In 100 permutation
iterations, the brain volume matrix was held constant,
while the sexual orientation underwent participant-wise
random shuffling. While the constructed surrogate brain
signals preserved the statistical structure idiosyncratic
to the MRI-derived brain signals, they were permitted
to selectively destroy the signal property related to the
logistic regression weight to be tested. The empirical
distribution generated in this manner reflected the null
hypothesis of random association between the volume
and sexual orientation across participants. The beta coef-
ficients were recorded in each iteration. The P values
were obtained given the distance between the original
beta values and the mean beta values obtained during
the permutation iterations. Note that significance in this
setting does not imply single contribution of the ROI
with a significant weight in the prediction. Indeed, in
linear models, the target value is modeled as a linear
combination of all the features. In other words, the mod-
els exploited information carried by all included ROIs
to predict sexual orientation. Significance here demon-
strates the systematic contribution of a ROI at hand for
contributions to distinguishing between the 2 groups but
does not mean that other ROIs did not contribute at all.
This analysis setting is an instance of the prediction-
inference dilemma (Bzdok and Yeo 2017; Bzdok et al.
2019, 2020): The modeling goals of identifying single-
variable effects and maximizing prediction performance
in unseen subjects are incongruent.

Code availability
All analysis scripts of the present study are readily
accessible to the reader online (https://github.com/
JLefortBesnard/SexualOrientation_2020).

Results
Brain structure
Our findings indicated a prediction of sexual orientation
slightly above chance level, revealing 8 significant
weights in the GMV setting (P < 0.05). The mean accu-
racy of the averaged GMV models, incorporating only
structural MRI data, was 62.31%, with a standard error
of 6.72%. This indicates an overall prediction of sexual
orientation slightly above chance level. Figure 3 shows
those brain regions for which GMV were highly weighted
for predicting heterosexual or homosexual individuals.
There were 5 significant ROIs (P < 0.05) that consistently
contributed to predicting homosexual orientation. That
is, model parameter values corresponding to these ROIs
were repeatedly exceeding chance level as part of the
overall model for predicting homosexual orientation
of single individuals. These most discriminatory ROIs
included the left middle occipital gyrus (coefficient
= −0.55), left precentral gyrus (coefficient = −0.94),

left precuneus/posterior cingulate cortex (coefficient =
−0.59), right fusiform gyrus (coefficient = −0.75), and
right temporal occipital-parietal cortex (coefficient =
−0.62). On the other hand, there were 3 significant ROIs
(P < 0.05) that consistently contributed to predicting het-
erosexual orientation. That is, model parameter values
corresponding to these ROIs were repeatedly exceeding
chance level as a part of the overall model for predicting
the heterosexual orientation in single individuals. These
most discriminatory ROIs included 2 clusters in the right
precentral gyrus (coefficient = 0.72 and 0.62) and the
right lateral prefrontal cortex (coefficient = 0.50). Thus,
GMV in visual cortices, somatosensory cortices, and parts
of the DMN were informative about predicting sexual
orientation, with lateralized results in the somatosensory
cortices. Detailed information on the significant GMV
regions is provided in Table 2. Figure 4A depicts the
receiver operating characteristic curve (ROC), which
measures the classification performance at various
threshold settings, while Fig. 4B depicts the confusion
matrix, with the percentage of correct classification
and misclassification, based on structural MRI data,
for both homo- and heterosexual participants. Overall,
64.6% of the homosexual and 60.5% of the heterosexual
individuals were correctly classified by our L2-penalized
logistic regression model for GMV. On the other hand,
35.4% of the homosexual and 39.5% of the heterosexual
participants were misclassified. Thus, classification
accuracy was similar for both hetero- and homosexual
participants and in both cases only slightly above the
chance level of 50%.

Brain function
The mean accuracy of the averaged models incorporat-
ing only fMRI data was 91.76%, with a standard error
of 9.89. Figure 5 shows those brain regions that were
highly weighted for predicting heterosexual or homosex-
ual individuals. There were 5 significant weights (P <

0.05) indicating that the respective ROIs were informative
for predicting homosexual orientation: left orbito-frontal
cortex (coefficient = −0.51), left prefrontal cortex (coeffi-
cient = −0.58), right precentral gyrus (coefficient = −0.69),
right orbito-frontal cortex (coefficient = −0.44), and right
precuneus (coefficient = −0.49). None of the ROIs indi-
cating high relevance for the prediction of heterosexual
orientation were significant. Detailed information on the
significant RSFC regions is provided in Table 3. Figure 6A
depicts the ROC curve, which measures the classification
performance at various threshold settings, while Fig. 6B
depicts the confusion matrix, with the percentage of cor-
rect classification and misclassification, based on RSFC,
for both homo- and heterosexual participants. Overall,
82.9% of homosexual and 100% of heterosexual individ-
uals were correctly classified by our logistic regression
model. Thus, all heterosexual participants were correctly
classified, whereas 17.1% of homosexual participants
were misclassified as heterosexual.
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Fig. 3. GMV results for predicting sexual orientation. GMV of these regions overlaid on the MNI-152 template brain showed statistically significant
weights in the prediction of sexual orientation. The blue regions contributed to detecting homosexual individuals, while the red regions contributed to
detecting heterosexual individuals.

Table 2. MNI coordinates of the significant brain regions in the structural MRI analysis and their associated coefficients from the
modeling.

Significant ROIs Area Network x y z Coefficient

Left midoccipital gyrus 7 Visual −28 −76 −14 −0.55
Left precentral gyrus 4 Somatomotor −56 −16 6 −0.94
Left precuneus/PCC 2 Default mode −6 −46 12 −0.59
Right right fusiform gyrus 2 Visual 32 −26 −22 −0.75
Right precentral gyrus 6 Somatomotor 44 −18 0 −0.62
Right precentral gyrus 8 Somatomotor 64 −22 0 0.72
Right temporal occipital parietal 1 Salience/ventral attention 60 −46 6 0.62
Right lateral prefrontal cortex 4 Control 44 46 −14 0.5

Fig. 4. ROC curve and confusion matrix of the sexual orientation prediction based on GMV. A) ROC curve plot of true positive rate versus false positive
rate. The area under the ROC curve (AUC) measures the classification performance at various threshold settings. The higher the AUC, the better the
model is at distinguishing between homosexual and heterosexual participants. Our model gave an AUC of 0.56 which can be considered as acceptable.
B) The y-axis shows each of the 2 targets (homosexual or heterosexual), while the x-axis shows each of the 2 predicted labels. The upper left and lower
right squares display the percentage of correct classification, while the upper right and lower left squares display the percentage of misclassification.
Here, 64.6% of homosexual participants and 60.5% of heterosexual participants were correctly classified by the linear model. In each case, the percentage
of correctly classified participants was higher than the percentage of misclassified participants, suggesting a fair performance of the model.

Discussion

Here, we have developed a machine learning pipeline to
provide a proof of principle that an individual’s sexual
orientation could be predictable based on noninvasive
brain measurements alone. We report a predictive accu-
racy for structural MRI data which was slightly above the

chance level. This brain-imaging modality may thus be
less suitable to achieve highly accurate predictions of
sexual orientation. Previous studies investigating sexual
orientation using structural MRI focused primarily on the
cortical and subcortical thicknesses as well as diffusion
tensor imaging modalities. They also did not use a con-
sistent approach to answer their question. Most studies
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Fig. 5. RSFC results for predicting sexual orientation. RSFC of these regions overlaid on the MNI-152 template brain showed statistically significant
weights in the prediction of sexual orientation. The blue regions contributed to detecting homosexual individuals.

Table 3. MNI coordinates of the significant brain regions in the RSFC analysis and their associated coefficients from the modeling.

Significant ROIs Area Network x y z Weight

Left orbito-frontal cortex 1 Limbic −14 18 −22 −0.51
Left prefrontal cortex 7 Default mode −20 62 −8 −0.58
Right precentral gyrus 5 Somatomotor 56 −10 4 −0.69
Right orbito-frontal cortex 1 Limbic 22 14 −22 −0.44
Right precuneus 1 Control 16 −66 32 −0.49

Fig. 6. ROC curve and confusion matrix of the sexual orientation prediction based on RSFC. A) ROC curve plot of true positive rate versus false positive
rate. The AUC measures the classification performance at various threshold settings. The higher the AUC, the better the model is at distinguishing
between homosexual and heterosexual participants. Our model gave an AUC of 0.98 which can be considered as very good. B) The y-axis shows each
of the 2 targets (homosexual or heterosexual), while the x-axis shows each of the 2 predicted labels. The upper left and lower right squares display the
percentage of correct classification, while the upper right and lower left squares display the percentage of misclassification. Here, 82.9% of homosexual
participants and 100% of heterosexual participants were correctly classified by the linear model. In each case, the percentage of correctly classified
participants was considerably higher than the percentage of misclassified participants, suggesting a very good performance of the model.

reported cortical thickness differences between groups
(Abé et al. 2014; Manzouri and Savic 2019), while oth-
ers have questioned differences in subcortical volumes,
hemispheric asymmetries or using diffusion modalities
(Frigerio et al. 2021). As a result, when comparing pre-
vious results with the predictive ROIs we found in our
study, we could not find matching brain regions for dis-
tinguishing sexual orientation. In contrast with the struc-
tural analysis, using only RSFC to predict sexual orien-
tation, resulted in a prediction accuracy of 92% (±9.89).
Part of the explanation for this discrepancy in prediction

accuracy might reside in the fundamentally different
nature of the 2 windows into the human central nervous
system as well as associated methodological constraints.
By means of a stacking modeling strategy (Karrer et al.
2019), the pattern-learning problem (i.e. predicting sex-
ual orientation) in the RSFC analyses was tackled with
different models which learned some part of the infor-
mation contained in the functional connectivity but not
all the information. The new model, in turn, learned from
the intermediate predictions and thus improved the over-
all performance. Due to inherent differences in the data

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/7/4013/6698690 by guest on 03 O

ctober 2023



Benjamin Clemens et al. | 4021

structure, this complex and recursive learning strategy
could only be applied in the RSFC setting. Therefore, a
better accuracy in the RSFC setting might be expected for
2 reasons: (i) the stacking approach drastically improved
prediction performance and (ii) as there are much more
dimensions in the RSFC settings, there also are more
variations.

Focusing on RSFC, we demonstrated for the first time,
that a simple 5-min resting-state scan of the human
brain may provide a sufficiently strong basis to pre-
dict sexual orientation in healthy participants with high
accuracy. Adding to the corpus of previous neuroimaging
studies, our results are compatible with the interpreta-
tion that sexual orientation is linked to certain patterns
of RSFC which can be used for the prediction of this
highly complex human trait. This observation poten-
tially supports a neurobiological component of sexual
orientation: Such an accurate prediction of homo- ver-
sus heterosexual orientation is only plausible if RSFC
allowed extracting predictive rules to tell apart the 2
sexual orientations. Many previous investigations in the
field were task-related fMRI studies whose results may
have been sensitized to the fact that they employ experi-
mental tasks that are specifically designed to elicit brain
responses related to sexual orientation (e.g. presenting
erotic stimuli of male and female persons). In task-based
fMRI studies, deviations in the neural activity between
hetero- and homosexual participants are supposed to be
present predominately because of the nature of the task
itself. Examining RSFC offers a more native und unbi-
ased approach toward the connectomic basis of sexual
orientation, as it eliminates the potential confounding
influence of specific tasks.

While the differences in RSFC between homo- and
heterosexual participants allow for a rather accurate
prediction of sexual orientation, our study cannot speak
to the question of what caused these group differences.
Future longitudinal extensions of our present investiga-
tion might be able to trace out the trajectory of sexual ori-
entation and its brain-behavior correspondence by com-
paring the predictive accuracy of our pattern-learning
algorithms from the beginning of puberty to later adult-
hood. Indeed, individual life experience can shape the
brain in multiple ways, thus brain plasticity throughout
lifetime should be studied as potential confounding vari-
able as much as a variable of interest in future research.
The lived experiences of homosexual individuals can
be quite different, and differences in the experience-
dependent plasticity could also shape the brain in multi-
ple ways. In order to speak to nature/nurture issues, we
would need to observe trait-effects for neurobiological
properties for which experience-dependent plasticity is
an unlikely explanation. Nevertheless, we still want to
discuss the evidence of biological factors that are differ-
entially reflected in the brains of individuals who identify
as hetero- and homosexual, bringing to the surface the
possible brain substrates that provide the basis for the
predictive rules extractable in the present study.

In agreement with previous studies, one might
speculate that the high predictive accuracy of brain
functional connectivity observed here might be the result
of key biological influencing factors, including specific
genetic factors and prenatal hormones (Ganna et al.
2019). With respect to genetic influences, both twin
studies and molecular genetic studies have suggested
that the genetic influences on sexual orientation might
be rather subtle (Eskridge Jr. et al. 2005; Vasey et al. 2013).
Several deoxyribonucleic acid linkage studies, in sibling-
pairs with 1 homosexual brother, showed an increased
sharing of the Xq28 chromosomal region (Hu et al. 1995;
Sanders et al. 2015). Other studies (Rice et al. 1999;
Mustanski et al. 2005), however, failed to replicate this
result, and no significant genetic linkage has been
reported for female sexual orientation. A genome-
wide association study (GWAS), including data from
24,000 individuals with self-reports of sexual orientation,
revealed that the genetic marker closest to statistical
significance was located on the pericentromeric chro-
mosome 8 (Drabant et al. 2012). The seminal study by
Ganna et al. (2019), comprising genetic data from 477,522
individuals, concluded that all included genetic variants
accounted for maximally 25% of variation. Only 2 of
the 5 significant loci were associated with homosexual
behavior and were significant for the combined sample
of male and female individuals: rs11114975-12q21.31
and rs10261857-7q31.2. Thus, no GWAS study so far
allows for a meaningful prediction of an individual’s
sexual orientation. As for the genetic underpinnings of
other complex behavioral phenotypes, it is expected that
the singular influence of any sexual orientation related
genetic locus will be minimal at the single-subject
level. In contrast to potential genetic contributions,
theories implicating hormonal influences on sexual
orientation appear to be more broadly validated (Zucker
et al. 1996; Bailey et al. 2016). In the prenatal period of
development, during which fetal brains are particularly
sensitive to hormonal influences, there seems to be an
underexposure to prenatal androgens in homosexual
men and an overexposure to prenatal androgens in
homosexual women (Ellis and Ames 1987; Mustanski
et al. 2002; Bailey et al. 2016). This rationale is supported
by early hormonal manipulation in rats and mice and
by studies on the sexual orientation of individuals
with atypical hormonal development. Thus, a corpus
of existing research suggests that genes and hormones
probably have some neurobiological influence on the
shaping of sexual orientation and the accompanying
brain functional changes. But previous studies suggest
that social and environmental factors also play a role
(Bailey et al. 2016), which is supported by longitu-
dinal studies reporting fluidity in sexual orientation
(Savin-Williams and Ream 2007).

In comparison to previous RSFC studies on sexual
orientation, the present study provides the first spatially
unbiased, whole-brain machine learning approach of
male and female homo- and heterosexual participants.
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By contrast, most previous resting-state investigations
employed a comparative approach and focused solely
on seed-based analyses or a priori-defined resting-
state networks, trying to demonstrate increased or
decreased functional connectivity in relation to sexual
orientation. Several of these previous studies have
provided valuable insights, enabling basic inference
based on group comparisons and testing of specific
hypotheses of localized brain functional differences.
But only a data-driven, whole-brain, machine learning
approach can transcend this comparative approach and
enable us to detect generalizable predictive patterns
related to sexual orientation in RSFC.

Thus, although the nature of our results is fun-
damentally different from previous studies, we still
want to examine any potential overlap or discrepancy
with previous RSFC studies. Previous studies examining
RSFC repeatedly reported an involvement of the ACC,
medial prefrontal cortex, caudate, putamen, and the
precuneus (Savic and Lindström 2008; Manzouri and
Savic 2018; Manzouri and Savic 2019). For these midline
regions, reduced connectivity was typically found in
homosexual participants. A potential interpretation
of these aforementioned findings might be that self-
referential thoughts and self-related perception are
different in homosexual individuals. The aspect of
self-related perception makes sense, given that the
aforementioned areas form part of the DMN, which is
specifically related to self-referential processing. Our
RSFC analyses seems in agreement with these previous
findings since we also found key nodes of the DMN
to be predictive for sexual orientation in the present
study. This specifically includes the left precuneus and
precentral gyrus as well as several bilateral prefrontal
areas. Specifically, the precuneus is directly connected
to functional brain networks processing visual and
pheromonal stimuli as well as sexual arousal (Berglund
et al. 2006; Witelson et al. 2008; Zhang et al. 2012). Thus, it
seems plausible that the precuneus in combination with
the prefrontal cortex is involved in processing aspects
of sexual orientation. RSFC differences in primary and
secondary visual cortices were also found in a previous
study (Hu et al. 2013). A potential interpretation for
these previous findings in visual processing areas might
be the differences in visuospatial orientation between
heterosexual and homosexual individuals (Wegesin
1998; Rahman and Wilson 2003; Rahman et al. 2011).
Here, we did not find significant effects in visual pro-
cessing areas in our RSFC data. We suggest that for the
specific prediction of sexual orientation based on RSFC,
higher-order association areas as part of the DMN are
more important and informative than visual processing
areas.

Using a well-controlled, state-of-the-art machine
learning framework, the present study provides factual
information on how well sexual orientation can be pre-
dicted based on real neurobiological evidence. We pro-
vide initial support for the idea that sexual orientation

represents a complex construct which is more strongly
related to RSFC. Our quantitative modeling approach
based on individual brain anatomical/connectivity
patterns potentially enables personalized predictions,
thus going beyond strict group comparisons between
homo- and heterosexual groups. The accuracies of these
predictions do vary substantially in our study, depending
on the specific brain parameter being used (GMV vs.
RSFC). As outlined earlier, there might be specific
methodological reasons for this discrepancy in predictive
accuracy. In addition, the lower prediction accuracy for
GMV, compared to RSFC, might also indicate that sexual
orientation is less strongly implemented and measurable
in the anatomical features of the brain. Instead, sexual
orientation can be more accurately described based on
dynamic features of RSFC, indicating that it represents
a complex construct which is jointly shaped by an
interplay of personal experiences, social factors, and
neurobiological variables. In general, brain anatomy is
considered to be more rigid and less flexible than brain
functional connectivity, which therefore might be more
important for shaping the way in which we perceive,
process, and interpret information.

We are fully aware, that the topic being studied
here intersects with other sensible areas of personal
life and may have political or civil implications for
sexual minority groups. Some homosexual individuals
might be skeptical regarding the predictive nature of
its findings. Any kind of research on sexual orientation
has become increasingly controversial in modern times
due to political, cultural, and social implications. From
a scientific point of view, sexual orientation has been
understudied because it is politically controversial.
Members of the homosexual community might fear
that academic research on sexual orientation will be
misconstrued to substantiate agendas of oppression
or exclusion: Outside the context of balanced and
nuanced scientific discussions, results might be used
to justify discrimination against homosexual indi-
viduals. In light of these aforementioned issues, we
want to make it abundantly clear that this is not
our intention and that we clearly distance ourselves
from such discriminatory perspectives. We believe that
LGBTQIA+ rights are absolutely fundamental and that
every human being should be allowed to be attracted
to whomever he or she wants. We explicitly do not
pursue any political agenda with our research and
are interested in the topic purely from a scientific
perspective. We believe that specifically such highly
controversial areas could greatly benefit from a sci-
entific and evidence-based approach and discussion.
We try to be as transparent about the limitations and
shortcomings of the present study as possible (see
below). We want to clearly point out that our results
should only be interpreted as pointing toward the rich
diversity of human sexual orientation. Most importantly,
to prevent any misinterpretation, we want to explicitly
state that our results do not point toward a role for
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oppression or discrimination on the basis of sexual
orientation.

Limitations to keep in mind when interpreting results
from the present study include a limited sample size
compared to other neuroimaging investigations with
wider subject populations. It has indeed been noted
before that smaller participant samples can give better
out-of-sample model performances than what can
be obtained from larger, more diverse populations
(Benkarim et al. 2022; Woo et al. 2017). Thus, replication
in separate and larger datasets in future research will
be important to consolidate our results. However, we
opted for an analysis strategy which learns from data
how to best combine individual ROI-wise predictions
to obtain more accurate and robust models. In other
words, though a larger sample size would benefit this
approach, the stacking framework allowed to exploit
the current sample to its fullest (Karrer et al. 2019).
Nevertheless, in the future, we hope to join forces with
other groups investigating neuroimaging efforts toward
lifestyle traits of individuals with the prospect of fusing
multiple datasets to achieve larger sample sizes. Large,
general-purpose population datasets, such as ENIGMA
or the UK Biobank, are not ideally suited for studying
sexual orientation because it is almost never assessed
in a systematic manner. Furthermore, our study was
focused on 1 self-report question for determining sexual
orientation. As a next step in future investigations
in this direction, using Kinsey scores would provide
a number of advantages. These indicators have the
potential to provide a more precise picture and allow
for direct integration with common and advanced brain-
imaging derived assessments. Furthermore, this research
predicted sexual orientation in a purely task-free context.
Such a stimulus-independent setting allows studying
more directly intrinsic functional connectivity—one of
the most high-yield brain measurements at our disposal
to capture a person’s specific brain “fingerprint” (Finn
et al. 2015)—and may permit to readily increase sample
size in future studies given the reduced logistic costs.
However, it is important to note that task-based settings
may evoke some discriminant brain correlates that
cannot be uncovered using RSFC.

Conclusion
As the key result of our present machine learning inves-
tigation, a snapshot of functional coupling links alone
may be sufficient to accurately predict sexual orienta-
tion. Such neurobiologically based information, which
is (completely) free of task influences or other social
desirability aspects, supports the notion of clearly distin-
guishable brain phenotypes for heterosexual and homo-
sexual individuals. We thereby shed new light on the
brain correlates of sexual orientation in a task-free con-
text, focusing more on the patterns and differences of
intrinsic functional connectivity. These results indicate
that, aside from self-reports, RSFC offers neurobiological

information valuable for the highly accurate prediction
of sexual orientation. Of course, the complex results
presented here warrant additional studies and it would
be premature to draw firm conclusions. Additional stud-
ies should be conducted to test the replicability and
generalizability of the observed findings. Nevertheless,
our study illustrates the value and potential of RSFC
for biologically meaningful and generalizable predictive
patterns that provide clues to the functional organization
of the human brain.
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